Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2400875, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38558285

RESUMEN

"Spin" has been recently reported as an important degree of electronic freedom to promote catalysis, yet how it influences electronic structure remains unexplored. This work reports the spin-induced orbital hybridization in Ir─Fe bimetallic aerogels, where the electronic structure of Ir sites is effectively regulated by tuning the spin property of Fe atoms. The spin-optimized electronic structure boosts oxygen evolution reaction (OER) electrocatalysis in acidic media, resulting in a largely improved catalytic performance with an overpotential of as low as 236 mV at 10 mA cm-2. Furthermore, the gelation kinetics for the aerogel synthesis is improved by an order of magnitude based on the introduction of a magnetic field. Density functional theory calculation reveals that the increased magnetic moment of Fe (3d orbital) changes the d-band structure (i.e., the d-band center and bandwidth) of Ir (5d orbital) via orbital hybridization, resulting in optimized binding of reaction intermediates. This strategy builds the bridge between the electron spin theory with the d-band theory and provides a new way for the design of high-performance electrocatalysts by using spin-induced orbital interaction.

2.
J Mater Chem B ; 12(16): 3959-3969, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38477096

RESUMEN

The Fenton reaction-based chemodynamic therapy is a form of cancer therapy, and its efficacy can be significantly improved by promoting catalytic reactions involving iron ions. A system with high catalytic capacity and low biological toxicity that effectively inhibits tumor progression is required for optimal treatment. In this study, iron-loaded carbonaceous nanoparticles (CNPs@Fe) with Fenton catalytic activity were fabricated and applied for the chemodynamic therapy of cancer. The carbonaceous nanoparticles derived from glucose via a caramelization reaction demonstrated high biocompatibility. Besides, aromatic structures in the carbonaceous nanoparticles helped accelerate electron transfer to enhance the catalytic decomposition of H2O2, resulting in the formation of highly reactive hydroxyl radicals (˙OH). At pH 6.0 (representing weak acidity in the tumor microenvironment), the Fenton catalytic activity of CNPs@Fe in the decomposition of H2O2 was 15.3 times higher than that of Fe2+ and 28.3 times higher than that of Fe3O4via a chromogenic reaction. The reasons for the enhancement were revealed by analyzing the chemical composition of carbonaceous nanoparticles using high-resolution mass spectra. The developed Fenton agent also demonstrated significant therapeutic effectiveness and minimal side effects in in vitro and in vivo anticancer studies. This work proposes a novel approach to promote the generation of reactive oxygen species (ROS) for the chemodynamic therapy of cancer.


Asunto(s)
Carbono , Peróxido de Hidrógeno , Hierro , Nanopartículas , Peróxido de Hidrógeno/química , Concentración de Iones de Hidrógeno , Hierro/química , Humanos , Animales , Nanopartículas/química , Ratones , Carbono/química , Antineoplásicos/química , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Ratones Endogámicos BALB C , Supervivencia Celular/efectos de los fármacos , Tamaño de la Partícula , Femenino , Ensayos de Selección de Medicamentos Antitumorales
3.
RSC Adv ; 14(12): 7940-7963, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38454947

RESUMEN

Human health and ecology are seriously threatened by harmful environmental contaminants. It is essential to develop efficient and simple methods for their detection. Environmental pollutants can be detected using photoelectrochemical (PEC) detection technologies. The key ingredient in the PEC sensing system is the photoactive material. Due to the unique characteristics, such as a large surface area, enhanced exposure of active sites, and effective mass capture and diffusion, porous materials have been regarded as ideal sensing materials for the construction of PEC sensors. Extensive efforts have been devoted to the development and modification of PEC sensors based on porous materials. However, a review of the relationship between detection performance and the structure of porous materials is still lacking. In this work, we present an overview of PEC sensors based on porous materials. A number of typical porous materials are introduced separately, and their applications in PEC detection of different types of environmental pollutants are also discussed. More importantly, special attention has been paid to how the porous material's structure affects aspects like sensitivity, selectivity, and detection limits of the associated PEC sensor. In addition, future research perspectives in the area of PEC sensors based on porous materials are presented.

5.
Angew Chem Int Ed Engl ; 62(51): e202316257, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37941302

RESUMEN

The electrocatalytic oxidation of glucose plays a vital role in biomass conversion, renewable energy, and biosensors, but significant challenges remain to achieve high selectivity and high activity simultaneously. In this study, we present a novel approach for achieving complete glucose electrooxidation utilizing Cu-based metal-hydroxide-organic framework (Cu-MHOF) featuring coordinatively unsaturated Cu active sites. In contrast to traditional Cu(OH)2 catalysts, the Cu-MHOF exhibits a remarkable 40-fold increase in electrocatalytic activity for glucose oxidation, enabling exclusive oxidation of glucose into formate and carbonate as the final products. The critical role of open metal sites in enhancing the adsorption affinity of glucose and key intermediates was confirmed by control experiments and density functional theory simulations. Subsequently, a miniaturized nonenzymatic glucose sensor was developed showing superior performance with a high sensitivity of 214.7 µA mM-1 cm-2 , a wide detection range from 0.1 µM to 22 mM, and a low detection limit of 0.086 µM. Our work provides a novel molecule-level strategy for designing catalytically active sites and could inspire the development of novel metal-organic framework for next-generation electrochemical devices.


Asunto(s)
Técnicas Biosensibles , Estructuras Metalorgánicas , Glucosa/química , Estructuras Metalorgánicas/química , Cobre/química , Límite de Detección , Técnicas Electroquímicas
6.
Anal Chem ; 95(38): 14324-14330, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37713587

RESUMEN

Rapid identification of DNA oxidative damage sites is of great significance for disease diagnosis. In this work, electric field-regulated click reaction surface-enhanced Raman spectroscopy (e-Click-SERS) was developed aiming at the rapid and specific analysis of furfural, the biomarker of oxidative damage to the 5-carbon site of DNA deoxyribose. In e-Click-SERS, cysteamine-modified porous Ag filaments (cys@p-Ag) were prepared and used as electrodes, amine-aldehyde click reaction sites, and SERS substrates. Cysteamine was controlled as an "end-on" conformation by setting the voltage of cys@p-Ag at -0.1 V, which ensures its activity in participating in the amine-aldehyde click reaction during the detection of furfural. Benefiting from this, the proposed e-Click-SERS method was found to be sensitive, rapid-responding, and interference-resistant in analyzing furfural from plasma. The method detection limits of furfural were 5 ng mL-1 in plasma, and the whole "extraction and detection" procedure was completed within 30 min with satisfactory recovery. Interference from 13 kinds of common plasma metabolites was investigated and found to not interfere with the analysis, according to the exclusive adaptation of the amine-aldehyde click reaction. Notably, the e-Click-SERS technique allows in situ analysis of biological samples, which offers great potential to be a point-of-care testing tool for detecting DNA oxidative damage.


Asunto(s)
Desoxirribosa , Nanopartículas del Metal , Aldehídos , Espectrometría Raman/métodos , Furaldehído , Cisteamina , ADN , Aminas , Nanopartículas del Metal/química
8.
Small ; 19(47): e2303901, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37490519

RESUMEN

Surface antibacterial coatings with outstanding antibacterial efficiency have attracted increasing attention in medical protective clothing and cotton surgical clothing. Although nanozymes, as a new generation of antibiotics, are used to combat bacteria, their catalytic performance remains far from satisfactory as alternatives to natural enzymes. Single-atom nanodots provide a solution to the low catalytic activity bottleneck of nanozymes. Here, atomically thin C3 N4 nanodots supported single Cu atom nanozymes (Cu-CNNDs) are developed by a self-tailoring approach, which exhibits catalytic efficiency of 8.09 × 105 M-1 s-1 , similar to that of natural enzyme. Experimental and theoretical calculations show that excellent peroxidase-like activity stems from the size effect of carrier optimizing the coordination structure, leading to full exposure of Cu-N3 active site, which improves the ability of H2 O2 to generate hydroxyl radicals (•OH). Notably, Cu-CNNDs exhibit over 99% superior antibacterial efficacy and are successfully grafted onto cotton fabrics. Thus, Cu-CNNDs blaze an avenue for exquisite biomimetic nanozyme design and have great potential applications in antibacterial textiles.


Asunto(s)
Radical Hidroxilo , Textiles , Antibacterianos/farmacología , Antibacterianos/química , Catálisis
9.
Small ; 19(24): e2207557, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36866466

RESUMEN

Electrochemical upgrading of ethanol to acetic acid provides a promising strategy to couple with the current hydrogen production from water electrolysis. This work reports the design of a series of bimetallic PtHg aerogels, where the PtHg aerogel exhibits a 10.5-times higher mass activity than that of commercial Pt/C toward ethanol oxidation. More impressively, the PtHg aerogel demonstrates nearly 100% selectivity toward the production of acetic acid. The operando infrared spectroscopic studies and nuclear magnetic resonance analysis verify the preferable C2 pathway mechanism during the reaction. This work opens an avenue for the electrochemical synthesis of acetic acid via ethanol electrolysis.

10.
Nanoscale ; 15(14): 6629-6635, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36951617

RESUMEN

The management of ascorbic acid (AA) in biological fluids is of significant importance for body functions and human health, yet challenging due to the lack of high-performance sensing catalysts. Herein, we report the design of Rh single-atom nanozymes (Rh SAzymes) by mimicking the active sites of ascorbate peroxidase toward efficient electrocatalytic oxidation and detection of AA. Benefiting from the enzyme-mimicking single-atom coordination, the Rh SAzyme exhibits an unprecedented electrocatalytic activity for AA oxidation with an onset potential as low as 0.02 V (vs. Ag/AgCl). Combined with the screen-printing technology, a miniaturized Rh SAzyme biosensor was firstly constructed for tracking dynamic trends of AA in the human subject and detecting AA content in nutritional products. The as-prepared biosensor exhibits excellent detection performances with a wide linear range of 10.0 µM-53.1 mM, a low detection limit of 0.26 µM, and a long stability of 28 days. This work opens a door for the design of artificial single-atom electrocatalysts to mimic natural enzymes and their subsequent application in biosensors.


Asunto(s)
Ácido Ascórbico , Humanos , Oxidación-Reducción
11.
Int J Nanomedicine ; 18: 881-897, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36844435

RESUMEN

Purpose: Owing to lack of specific molecular targets, the current clinical therapeutic strategy for triple negative breast cancer (TNBC) is still limited. In recent years, some nanosystems for malignancy treatment have received considerable attention. In this study, we prepared caramelized nanospheres (CNSs) loaded with doxorubicin (DOX) and Fe3O4 to achieve the synergistic effect of combined therapy and real-time magnetic resonance imaging (MRI) monitoring, so as to improve the diagnosis and therapeutic effect of TNBC. Methods: CNSs with biocompatibility and unique optical properties were prepared by hydrothermal method, DOX and Fe3O4 were loaded on it to obtain Fe3O4/DOX@CNSs nanosystem. Characteristics including morphology, hydrodynamic size, zeta potentials and magnetic properties of Fe3O4/DOX@CNSs were evaluated. The DOX release was evaluated by different pH/near-infrared (NIR) light energy. Biosafety, pharmacokinetics, MRI and therapeutic treatment of Fe3O4@CNSs, DOX and Fe3O4/DOX@CNSs were examined in vitro or in vivo. Results: Fe3O4/DOX@CNSs has an average particle size of 160 nm and a zeta potential of 27.5mV, it demonstrated that Fe3O4/DOX@CNSs is a stable and homogeneous dispersed system. The hemolysis experiment of Fe3O4/DOX@CNSs proved that it can be used in vivo. Fe3O4/DOX@CNSs displayed high photothermal conversion efficiency, extensive pH/heat-induced DOX release. 70.3% DOX release is observed under the 808 nm laser in the pH = 5 PBS solution, obviously higher than pH = 5 (50.9%) and pH = 7.4 (less than 10%). Pharmacokinetic experiments indicated the t1/2ß, and AUC0-t of Fe3O4/DOX@CNSs were 1.96 and 1.31 -fold higher than those of DOX solution, respectively. Additionally, Fe3O4/DOX@CNSs with NIR had the greatest tumor suppression in vitro and in vivo. Moreover, this nanosystem demonstrated distinct contrast enhancement on T2 MRI to achieve real-time imaging monitoring during treatment. Conclusion: Fe3O4/DOX@CNSs is a highly biocompatible, double-triggering and improved DOX bioavailability nanosystem that combines chemo-PTT and real-time MRI monitoring to achieve integration of diagnosis and treatment of TNBC.


Asunto(s)
Antineoplásicos , Hipertermia Inducida , Neoplasias de la Mama Triple Negativas , Humanos , Antineoplásicos/farmacología , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Terapia Fototérmica , Nanomedicina Teranóstica , Fototerapia/métodos , Doxorrubicina , Imagen por Resonancia Magnética/métodos , Hipertermia Inducida/métodos , Línea Celular Tumoral
12.
Adv Mater ; 35(14): e2211512, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36774196

RESUMEN

Decentralized electrochemical production of hydrogen peroxide (H2 O2 ) is an attractive alternative to the industrial anthraquinone process, the application of which is hindered by the lack of high-performance electrocatalysts in acidic media. Herein, a novel catalyst design strategy is reported to optimize the Pd sites in pure metallic aerogels by tuning their geometric environments and electronic structures. By increasing the Hg content in the Pd-Hg aerogels, the PdPd coordination is gradually diminished, resulting in isolated, single-atom-like Pd motifs in the Pd2 Hg5 aerogel. Further heterometal doping leads to a series of M-Pd2 Hg5 aerogels with an unalterable geometric environment, allowing for sole investigation of the electronic effects. Combining theoretical and experimental analyses, a volcano relationship is obtained for the M-Pd2 Hg5 aerogels, demonstrating an effective tunability of the electronic structure of the Pd active sites. The optimized Au-Pd2 Hg5 aerogel exhibits an outstanding H2 O2 selectivity of 92.8% as well as transferred electron numbers of ≈2.1 in the potential range of 0.0-0.4 VRHE . This work opens a door for designing metallic aerogel electrocatalysts for H2 O2 production and highlights the importance of electronic effects in tuning electrocatalytic performances.

13.
Angew Chem Int Ed Engl ; 62(2): e202214487, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36347831

RESUMEN

Electrochemiluminescence (ECL) represents a widely explored technique to generate light, in which the emission intensity relies critically on the charge-transfer reactions between electrogenerated radicals. Two types of charge-transfer mechanisms have been postulated for ECL generation, but the manipulation and effective probing of these routes remain a fundamental challenge. Here, we demonstrate the design of quantum dot (QD) aerogels as novel ECL luminophores via a versatile water-induced gelation strategy. The strong electronic coupling between adjacent QDs enables efficient charge transport within the aerogel network, leading to the generation of highly efficient ECL based on the selectively improved interparticle charge-transfer route. This mechanism is further verified by designing CdSe-CdTe mixed QD aerogels, where the two mechanistic routes are clearly decoupled for ECL generation. We anticipate our work will advance the fundamental understanding of ECL and prove useful for designing next-generation QD-based devices.

14.
Environ Sci Technol ; 56(15): 10818-10828, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35852947

RESUMEN

Nanoplastics are emerging pollutants that pose potential threats to the environment and organisms. However, in-depth research on nanoplastics has been hindered by the absence of feasible and reliable analytical methods, particularly for trace nanoplastics. Herein, we propose a hyphenated method involving membrane filtration and surface-enhanced Raman spectroscopy (SERS) to analyze trace nanoplastics in water. In this method, a bifunctional Ag nanowire membrane was employed to enrich nanoplastics and enhance their Raman spectra in situ, which omitted sample transfer and avoided losing smaller nanoplastics. Good retention rates (86.7% for 50 nm and approximately 95.0% for 100-1000 nm) and high sensitivity (down to 10-7 g/L for 50-1000 nm and up to 105 SERS enhancement factor) of standard polystyrene (PS) nanoplastics were achieved using the proposed method. PS nanoplastics with concentrations from 10-1 to 10-7 g/L and sizes ranging from 50 to 1000 nm were successfully detected by Raman mapping. Moreover, PS micro- and nanoplastics in environmental water samples collected from the seafood market were also detected at the µg/L level. Consequently, the proposed method provides more possibilities for analyzing low-concentration nanoplastics in aquatic environments with high enrichment efficiency, minimal sample loss, and high sensitivity.


Asunto(s)
Nanocables , Plata , Microplásticos , Poliestirenos , Plata/química , Espectrometría Raman/métodos , Agua
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 281: 121600, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35816865

RESUMEN

Arsenic speciation analysis is important for pollution and health risk assessment. Surface-enhanced Raman Spectroscopy (SERS) is supposed to be a promising detection technology for arsenic species owing to the unique fingerprints. However, further application of SERS is hampered by its poor repeatability. Herein, the role of surface silver ions on colloidal Ag was revealed in SERS analysis of arsenic species. Arsenic species were adsorbed on Ag nanoparticles (Ag NPs) driven by surface silver ions and were simultaneously sensed by the SERS "hot spots" generated from the aggregation of Ag NPs. So, the inconsistent SERS activities of Ag NPs synthesized from different batches can be significantly improved by modifying external silver ions onto Ag NPs (AgNPs@Ag+), Specific binding affinity of surface silver ions to arsenic species generated higher sensitivity (detection limit, 4.0 × 10-11 mol L-1 for arsenite, 8.0 × 10-11 mol L-1 for arsenate), wider linear range, faster response, cleaner spectra background and better reproducibility. Batch-to-batch reproducibility was significantly improved with a variation below 3.1%. The method was also demonstrated with drinking and environmental water with adequate recovery and high interference resistance. Our findings displayed good analytical practice of the surface silver ions derived SERS method and its great potential in the rapid detection of hazardous materials.


Asunto(s)
Arsénico , Nanopartículas del Metal , Iones , Nanopartículas del Metal/química , Reproducibilidad de los Resultados , Plata/química , Espectrometría Raman/métodos , Agua
16.
Anal Chem ; 94(26): 9270-9277, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35729729

RESUMEN

The core of the surface-enhanced Raman spectroscopy (SERS)-based techniques for dynamic monitoring is to realize rapid and reversible adsorption. Herein, the integration technology of electro-enhanced adsorption, solid-phase microextraction, and surface-enhanced Raman spectroscopy (EE-SPME-SERS) was developed to obtain sensitive, ultrafast, and reversible SERS response toward in situ monitoring of pharmaceuticals and personal care products (PPCPs). In the EE-SPME-SERS method, a roughened Ag fiber with Au modification (r-Ag/Au fiber) was used as the SERS substrate, SPME sorbent, and working electrode. The r-Ag/Au fiber displayed good SERS sensitivity, ultrahigh photostability, and adsorption properties. The adsorption efficiency of benzidine was 76 times accelerated in EE-SPME-SERS compared to that in static adsorption. The whole process of "sampling and detection" in EE-SPME-SERS can be finished within 1 s. Reversible adsorption and desorption can be achieved in situ by switching the direction of electric field, and the regeneration process takes only a few minutes. Simulated release of benzidine from household wastewater was in situ and dynamically monitored using this strategy. EE-SPME-SERS was proved universal for ionized PPCPs and can detect multicomponents simultaneously. In addition, EE-SPME-SERS showed very good analytical properties. Great potential of EE-SPME-SERS can be expected in environmental monitoring.


Asunto(s)
Cosméticos , Microextracción en Fase Sólida , Bencidinas , Preparaciones Farmacéuticas , Microextracción en Fase Sólida/métodos , Espectrometría Raman/métodos
17.
Acta Biomater ; 142: 284-297, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35151925

RESUMEN

Pancreatic adenocarcinoma (PDAC) is one of the deadliest cancers, and it is resistant to most conventional antineoplastic therapies. To address this challenge, gemcitabine (Gem)-loaded carbonaceous nanoparticles (MFC-Gem) as nanozymes and a theranostic platform were fabricated and used for MR-guided ferroptosis-chemo synergetic therapy of PDAC. As a biocompatible carrier, MFC-Gem nanoparticles are regarded as peroxidase-like and glutathione peroxidase-like nanozymes that promote ferroptosis therapy by effectively generating ROS and consuming GSH. Meanwhile, the combination of MnFe2O4 and Gem can markedly enhance synergetic therapy by both ferroptosis and Gem chemotherapy. MFC-Gem has higher magnetic susceptibility and was used for simultaneous magnetic resonance imaging (MRI) monitoring of the PDAC treatment. In conclusion, these salient features unequivocally indicate that this biocompatible nanotheranostic system has cooperative and enhancing chemotherapy effects for anti-PDAC therapy with simultaneous MRI monitoring. STATEMENT OF SIGNIFICANCE: Pancreatic adenocarcinoma (PDAC) is one of the deadliest cancers, and it is resistant to most conventional antineoplastic therapies. To address this challenge, gemcitabine (Gem)-loaded carbonaceous nanoparticles (MFC-Gem) as nanozymes and a theranostic platform were fabricated and used for MR-guided ferroptosis-chemo synergetic therapy of PDAC. i) MFC nanoparticles are regarded as peroxidase-like and glutathione peroxidase-like nanozymes that enhance ferroptosis therapy by effectively generating ROS and consuming GSH. ii) The combination of MnFe2O4 and Gem can markedly enhance synergetic therapy by both ferroptosis and Gem chemotherapy. iii) MFC-Gem has higher magnetic susceptibility and was used for simultaneous magnetic resonance imaging (MRI) monitoring of the PDAC treatment.


Asunto(s)
Adenocarcinoma , Antineoplásicos , Ferroptosis , Neoplasias Pancreáticas , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Desoxicitidina/análogos & derivados , Glutatión Peroxidasa/uso terapéutico , Humanos , Imagen por Resonancia Magnética , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Peroxidasa , Especies Reactivas de Oxígeno , Gemcitabina , Neoplasias Pancreáticas
18.
Sci Total Environ ; 816: 151651, 2022 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-34785220

RESUMEN

As an excellent conductive herbicide, swep is widely used in weed removal. Its remaining in atmosphere and water can not only contaminate the environment but also pose a threat to human health. This work presented a systematic theoretical study of HO•-mediated degradation mechanisms and kinetics of swep in atmosphere and water environment. HO•-addition reaction was the dominant reaction type and the main degradation products N-(3-chloro-4-hydroxyphenyl)carbamate (P2), N-(3,4-chloro-6-hydroxyphenyl)carbamate (P3) and N-(3,4-chloro-2-hydroxyphenyl)carbamate (P11) were in good agreement with the experimental results. The total rate constants of swep with HO• were determined to be 3.37 × 10-12 and 7.73 × 10-12 cm3 molecule-1 s-1 (at 298 K) in atmosphere and water environment, respectively. As an excellent adsorbent and photocatalyst, zinc oxide (ZnO) was selected to study the adsorption and catalytic degradation mechanism of swep. The adsorption configuration of (ZnO)n clusters with swep was most stable when n = 6. The adsorption of (ZnO)6 cluster was more favorable to the H-atom abstraction reaction. The toxicities of swep and its degradation products to aquatic organisms were predicted. The degradation of swep induced by HO• was beneficial to the survival of aquatic organisms. This work would provide a comprehensive theoretical basis for understanding the degradation behavior of organic pollutants.


Asunto(s)
Herbicidas , Contaminantes Químicos del Agua , Atmósfera , Humanos , Radical Hidroxilo , Cinética , Oxidación-Reducción , Agua , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
19.
J Hazard Mater ; 416: 126250, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34492993

RESUMEN

The research on the mechanisms and kinetics of radical oxidation in peracetic acid-based advanced oxidation processes was relatively limited. In this work, HO• and organic radicals mediated reactions of acetaminophen (ACT) were investigated, and the reactivities of important organic radicals (CH3COO• and CH3COOO•) were calculated. The results showed that initiated reaction rate constants of ACT are in the order: CH3COO• (5.44 × 1010 M-1 s-1) > HO• (7.07 × 109 M-1 s-1) > CH3O• (1.57 × 107 M-1 s-1) > CH3COOO• (3.65 × 105 M-1 s-1) >> •CH3 (5.17 × 102 M-1 s-1) > CH3C•O (1.17 × 102 M-1 s-1) > CH3OO• (11.80 M-1 s-1). HO•, CH3COO• and CH3COOO• play important roles in ACT degradation. CH3COO• is another important radical in the hydroxylation of aromatic compounds in addition to HO•. Reaction rate constants of CH3COO• and aromatic compounds are 1.40 × 106 - 6.25 × 1010 M-1 s-1 with addition as the dominant pathway. CH3COOO• has high reactivity to phenolate and aniline only among the studied aromatic compounds, and it was more selective than CH3COO•. CH3COO•-mediated hydroxylation of aromatic compounds could produce their hydroxylated products with higher toxicity.


Asunto(s)
Ácido Peracético , Contaminantes Químicos del Agua , Acetaminofén/toxicidad , Radical Hidroxilo , Cinética , Oxidación-Reducción , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
20.
Chemosphere ; 281: 130996, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34289634

RESUMEN

As one of the main components of combustion of tobacco products occurs (CARB), crotonaldehyde has an acute toxicity and widely exists in the atmosphere, which is harmful to human health. The removal efficiency of VOCs by ozonation can reach 80-90%. Based on the theory of quantum chemistry, the degradation mechanism, kinetics and toxicity of crotonaldehyde by ozonation in gas phase and heterogeneous phase were studied. Ozone was added to the olefins unsaturated double bond to form a five-membered ring primary ozonide, which was further fractured due to its unstable structure to form a Criegee intermediate and an aldehyde compound. The reaction rate constant of crotonaldehyde with ozone was 1.24 × 10-17 cm3 molecule-1 s-1 at 298 K and 1 atm, which was an order of magnitude higher than the experimental value. From toxicity assessment, it was found that the ozonation of crotonaldehyde is beneficial to the removal of toxicity. Mineral dust aerosol exists in the atmosphere in large quantities, and SiO2 is the most abundant component. VOCs are transformed into particle state on their surface through homogeneous nucleation and heterogeneous nucleation. Referring to the crystal structure of SiO2, five hydroxylated silica oligomer cluster structures were simulated and the adsorption configurations of crotonaldehyde on their surface were simulated. The adsorption of crotonaldehyde on the surface of the clusters was achieved by forming hydrogen bonds and had good adsorption effects. The adsorption of hydroxylated silica oligomer clusters didn't change the ozonation mechanism of crotonldehyde, but had a certain effect on the reaction rate.


Asunto(s)
Ozono , Dióxido de Silicio , Adsorción , Aldehídos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...